On Almost Duality for Frobenius Manifolds
نویسندگان
چکیده
We present a universal construction of almost duality for Frobenius manifolds. The analytic setup of this construction is described in details for the case of semisimple Frobenius manifolds. We illustrate the general considerations by examples from the singularity theory, mirror symmetry, the theory of Coxeter groups and Shephard groups, from the Seiberg Witten duality.
منابع مشابه
Frobenius Pairs and Atiyah Duality
We define a notion of “Frobenius pair”, which is a mild generalization of the notion of “Frobenius object” in a monoidal category. We then show that Atiyah duality for smooth manifolds can be encapsulated in the statement that a certain collection of structure obtained from a manifold forms a “commutative Frobenius pair” in the stable homotopy category of spectra.
متن کاملF–manifolds with Flat Structure and Dubrovin’s Duality
This work continues the study of F–manifolds (M, ◦), first defined in [HeMa] and investigated in [He]. The notion of a compatible flat structure ∇ is introduced, and it is shown that many constructions known for Frobenius manifolds do not in fact require invariant metrics and can be developed for all such triples (M, ◦,∇). In particular, we extend and generalize recent Dubrovin’s duality [Du2]. §
متن کاملFrobenius manifolds and algebraic integrability
We give a short review of Frobenius manifolds and algebraic integrability and study their intersection. The simplest case is the relation between the Frobenius manifold of simple singularities, which is almost dual to the integrable open Toda chain. New types of manifolds called extra special Kähler and special F -manifolds are introduced which capture the intersection.
متن کاملOn some Frobenius groups with the same prime graph as the almost simple group ${ {bf PGL(2,49)}}$
The prime graph of a finite group $G$ is denoted by $Gamma(G)$ whose vertex set is $pi(G)$ and two distinct primes $p$ and $q$ are adjacent in $Gamma(G)$, whenever $G$ contains an element with order $pq$. We say that $G$ is unrecognizable by prime graph if there is a finite group $H$ with $Gamma(H)=Gamma(G)$, in while $Hnotcong G$. In this paper, we consider finite groups with the same prime gr...
متن کاملThe Tensor Product in the Theory of Frobenius Manifolds
We introduce the operation of forming the tensor product in the theory of analytic Frobenius manifolds. Building on the results for formal Frobenius manifolds which we extend to the additional structures of Euler fields and flat identities, we prove that the tensor product of pointed germs of Frobenius manifolds exists. Furthermore, we define the notion of a tensor product diagram of Frobenius ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003